Feed-forward Network
Considering a basic network architecture, first a linear combination of input data $x_1, \ldots, x_D$:
$$a_j = \sum_{i=1}^D\mathcal{w}_{ji}^{(1)}x_{i}+\mathcal{w}_{j0}^{(1)} \label{eq:1} \tag{1}$$
where $j=1, \ldots, M$.
Then each of this is transformed using a nonlinear activation function h(),
$$ z_j = h(a_j) \label{eq:2} \tag{2} $$
At the end, these values are linear combined again using output unit activations:
$$ a_k = \sum_{j=1}^{M}\mathcal{w}_{kj}^{(2)} + \mathcal{w}_{k0}^{(2)} \label{eq:3} \tag{3} $$
To merge all we got:
$$ y_k(\mathbf{x}, \mathbf{w}) = \sigma\Biggl(\sum_{j=1}^Mw_{kj}^{(2)}h\biggl(\sum_{i=1}^Dw_{ji}^{(1)}x_i + w_{j0}^{(1)}\biggr) + w_{k0}^{(2)}\Biggr) \label{eq:4} \tag{4} $$
if we absorb the biases, $(\ref{eq:4})$ could be simplified like:
$$ y_k(\mathbf{x}, \mathbf{w}) = \sigma\Biggl(\sum_{j=0}^Mw_{kj}^{(2)}h\biggl(\sum_{i=0}^Dw_{ji}^{(1)}x_i \biggr) \Biggr) \label{eq:5} \tag{5} $$
Network Training
Now we have the network architecture. Next step is to define the error cost function. Simply speaking, it could be defined like:
$$ E(\mathbf{w}) = \frac{1}{2}\sum_{n=1}^{N}{\Vert \mathbf{y}(\mathbf{x}_n, \mathbf{w}) - t_n\Vert}^{2} \label{eq:6} \tag{6} $$
In particular, this cost function could be interpreted from probabilistic perspective. [todo, explain this using probabilistic interpretation].
Error Backpropagation
todo
- todo, explain ($\ref{eq:6}$) using probabilistic interpretation